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Nonlinear interactions among standing surface 
and internal gravity waves? 

By TERRENCE M. JOYCE 
Department of Meteorology, Massachusetts Institute of Technology$ 

(Received 7 September 1973) 

A laboratory study has been undertaken to measure the energy transfer from 
two surface waves to one internal gravity wave in a nonlinear, resonant interac- 
tion. The interacting waves form triads for which 

and 

crj and K~ being the frequency and wavenumber of the j t h  wave. Unlike 
previously published results involving single triplets of interacting waves, 
all waves here considered are standing waves. For both a diffuse, two-layer den- 
sity field and it linearly increasing density with depth, the growth to steady state 
of a resonant internal wave is observed while two deep water surface eigen- 
modes are simultaneously forced by a paddle. Internal-wave amplitudes, phases 
and initial growth rates are compared with theoretical results derived assuming 
an arbitrary Boussinesq stratification, viscous dissipation and slight detuning 
of the internal wave. Inclusion of viscous dissipation and slight detuning permit 
predictions of steady-state amplitudes and phases as well as initial growth rates. 
Satisfactory agreement is found between predicted and measured amplitudes and 
phases. Results also suggest that the internal wave in a resonant triad can act 
as a catalyst, permitting appreciable energy transfer among surface waves. 

vlS - aZs & a, = 0 K~~ - K~~ & KI = 0; 

1. Introduction 
In  the past twelve years, resonant wave-wave interactions in fluid mechanics 

have been studied it great deal. The original suggestion by Phillips (1960) that 
irrotational surface gravity waves would exhibit such an interaction was the first 
in a series of papers on resonantly interacting surface gravity waves to emerge 
over a period of three years.$ An experiment was suggested by Longuet-Higgins 
(1962) to test the predictions made and two experiments were reported four years 
later which displayed many of the characteristics of the theory. The experiments 
were performed by Longuet-Higgins & Smith (1966) and McGoldrick, Phillips, 
Huang & Hodgson (1966). The interaction among deep water surface gravity 
waves was shown to occur at third order in the wave slope of Stokes ordering 
parameter E = KCC, where K = 2n(wavelength)-l and ais the amplitude of the same 
wave. As predicted, the interaction was weak and great care needed to be takenin 

-f Contribution no. 3209, Woods Hole Oceanographic Institution. 

5 See, for example, Phillips (1967) for a review of the state of the art up to 1966. 
Present address: Woods Hole Oceanographic Institution, Woods Hole, Mass. 02543. 

5 1  F L M  63 



802 T. M .  Joyce 

the experiments. While these experiments were being conducted, other types of 
waves were consideredwhich couldinteract at  secondorder in B .  McGoldrick( 1965) 
suggested that capillary-gravity waves could interact a t  this order. Ball (1964) 
and Thorpe ( 1966) presented theoretical evidence for the interaction between 
surface and internal progressive gravity waves, and among internal gravity waves. 
Hasselmann ( 1966) presented a general theory for geophysical nonlinear interac- 
tions drawing an analogy with quantum field scattering theory. Experiments 
have recently been reported by McGoldrick (1970) and Kim & Hanratty (1971) 
for progressive capillary-gravity waves, and by Martin, Simmons & Wunsch 
(1969) for progressive internal waves. Thorpe (1966) suggested an experiment in 
which two progressive surface gravity waves could be made resonantly to gener- 
ate an internal wave. The experiment, however, was never done. In all of the 
above work (except for capillary-gravity waves), at  least three waves are neces- 
sary to form a set. For surface gravity waves, interactions among four waves 
are also possible. 

It was soon realized that these theories for triad or quartet resonances could 
also explain the instability of a finite amplitude progressive wave. Benjamin & 
Feir (1967) and Phillips (1967) used these arguments to explain the ultimate 
breakup of a nonlinear, progressive Stokes wave due to side band resonances. 
Davis & Acrivos (1967) used a resonant interaction approach to explain the 
observed breakdown of a progressive internal wave in a diffusive, two-layer 
density field. Hasselmann (1967) has presented a general criterion for nonlinear 
wave stability. The predictions of this theory were verified by McEwan (1971) 
in an experiment dealing with the finite amplitude instability of standing internal 
waves in a linear stratification. Martin, Simmons & Wunsch (1972) reported 
similar instabilities for progressive internal gravity waves. Resonant nonlinear 
instability was suggested by Craik (197 1) as an important mechanism in the turbu- 
lent breakdown of a laminar boundary layer. Clearly the importance of the 
resonant wave interaction mechanism has not yet been fully realized. It pro- 
vides an avenue for the exchange of mechanical energy among different frequen- 
cies and scales of motion in geophysical fluids. 

One possible application of this mechanism is that of the generation of oceanic 
internal waves by high frequency surface waves. Kenyon (1968) considered this 
interaction and concluded that over much of the ocean it was less important than 
interactions among surface or internal waves separately. For his oceanic model, 
he choose a constant Brunt-Vaisala frequency stratification. It will be shown 
in what follows that the surface-internal wave interaction can be important over 
much of the ocean if a near surface pycnocline is present. 

An experiment has been conducted in which two high frequency surface 
waves are generated by a wave maker and a resonant internal wave is observed 
to grow. Both a constant BrunkVaisaIa and diffuse two-layer stratification are 
considered in detail. Unlike previous work, the experiments described here 
use three resonant standing waves in which two are externally produced. 
A theoretical approach for a rather general stratification is taken, which as- 
sumes ab initio all waves to be standing. The advantage of this experimental 
approach to the study of the interaction of surface and internal gravity waves lies 
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in its relative simplicity. To be more precise, the resonant growth of an internal 
wave can be observed as a function of time in a relatively small wave tank instead 
of the growth of the resonant wave with distance in a large wave tank. 

In  $ 2  the experiment will be described. Section 3 will present the theory for 
a general Boussinesq stratification. In  $ 4  predictions will be compared with 
experimental data. A summary of the results constitutes 9 5 .  

2. Description of the experiment 
2.1. Apparatus 

The experimental work was conducted in a wave tank especially built for this 
study. It was constructed with plate glass sides, Plexiglas bottom and ends, and 
a steel frame supporting structure. The tank was %Om long, 0.2 m wide and 1.0 m 
deep. Two Plexiglas end inserts enabled the working length of the tank to be 
adjusted. For most of the experiments, the length was kept at 1-8 m. 

The wave tank was med  from two 55 gallon polyethylene barrels which were 
supported directly above the wave tank, minimizing floor space requirements. 
A basic state of linear density stratification was easily formed using a method 
suggested by Oster (1965) and used successfully by Cacchione (1970). Two 
reservoirs, one filled with fresh water, the other salt water, were connected via a 
siphon. As fresh water flowed down into the wave tank, salt water was intro- 
duced and mixed into the fresh water reservoir. An American Optical refracto- 
meter (model 10402) was used to measure the index of refraction of a millilitre 
sample to one part in lo5. Calibration permitted density to be determined to 
five parts in lo6. Fluid samples were withdrawn from the tank a t  selected depths 
by a one metre long hypodermic needle and syringe. 

Surface waves were generated with a plunger-type paddle which was driven 
vertically by two synchronous motors, two eccentric drives and a mechanical 
adder. Eccentric driving produced higher harmonics in the vertical excursions of 
each shaft before addition. Shaft harmonics were less than 3 yo of the fundamental 
frequency. The motion of the paddle was then a sum of the motion of the two 
eccentric shafts. A differential gear and a resolver were also used. The electrical 
output of the resolver was approximately a sinusoidal function of time with a 
frequency equal to the difference frequency of the two motors. Each synchronous 
motor had an internal gear reduction of sixteen and was driven by a stable audio 
oscillator and a d.c. through audio power amplifier. Continuous change of fre- 
quency of both motors was thus possible with this arrangement. One audio 
oscillator was a HewletbPackard (model 204C) with a rated stability of 0.05 %. 
The second frequency source was a General Radio digital frequency synthesizer 
(model 1161-A) with a stability of 0.01 yo Net motion of the paddle was measured 
by a simple rack and potentiometer arrangement. 

Surface-wave amplitudes were detected by a transistorized wave gauge de- 
scribed in detail by McGoldrick (1969). The probe itself was of the capacitance 
type: a replaceable piece of coated magnetic wire 0.04in. in diameter. The ampli- 
tude and phase response of the circuitry was flat over a range of frequencies 
0-10 Hz. Characteristics were not tested beyond 10 He. Amplitude resolution of 

51-2 
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the whole device was limited by the ability of the experimenter to keep the fluid 
surface free from contaminants. A surface active agent such as Alcinox was used 
t o  reduce the surface tension at the air-'scum' interface. A sheet of saran wrap 
was always kept over the top of the wave tank. This helped keep the surface 
clean and the evaporative losses to a millimetre thick layer of water per day. 
With the wave gauge, resolution of 0.05 mm was possible. 

The presence of internal oscillations was detected in two ways. A Sanborn 
differential pressure transducer (model 268B) was used in the absolute mode to 
measure departures of pressure from local mean values at selected points in the 
fluid. The transducer proved to be a versatile and reliable instrument for both 
linear and diffuse two-layer stratifications alike. Fluctuations of 0-02 mm H,O 
were measurable. Beardsley (1969) obtained a resolution of 5 x 10-3mmH,0 by 
cross-correlating the pressure signal with a reference sinusoid of the same fre- 
quency. Depending on the density structure and frequency, a pressure resolution 
of 0.02 mm H,O corresponded typically to a vertical particle excursion of 0.3 mm. 
Surface-wave influence was kept to a minimum by keeping the pressure probe at 
least one surface wavelength (20 em) below the free surface. In  addition to internal 
measurements, neutrally buoyant particles made to the desired density were 
placed in the fluid. The particles were made by mixing together carbon tetra- 
chloride and heptane. Diphenylthiocarbazone, an intense green dye, soluble in 
CCL,, increased the contrast between the particles and the background. Potas- 
sium permanganate crystals dropped into the tank during an experiment pro- 
vided a visualization of the horizontal velocity field. For linear stratifications, 
horizontal lines of a highly non-diffusive dye (Blue Dextran 2000) were inserted 
during the filling process. These lines complemented the permanganate streaks 
by giving the field of vertical velocity. Back lighting through a diffuser enabled 
16mm moving pictures to be taken. The quantitative data for the internal 
oscillations, however, came from the pressure transducer and the particle am- 
plitudes. Figure 1 shows schematically the physical location of some of the 
apparatus. 

2.2. Procedure 
The procedure varied with the type of experiment being done, but several steps 
were common to all experiments. Before stratifying the wave tank, the fluids were 
allowed to outgas and come to thermal equilibrium with room temperature. 
Ordinarily one or two days was allowed for this step. After the tank was filled, 
both movable ends were gently placed in position, and the surface wave paddle 
was inserted to its fixed equilibrium depth. The surface eigenmodes were then 
determined by sweeping one of the motors through a range of frequencies while 
observing on an oscilloscope the output of a wave gauge placed a t  the end opposite 
the wave maker. Response curves obtained were then used to select surface eigen- 
frequencies. A typical response curve is shown in figure 2. Prior calculation had 
ensured that, for the proper choices of length and depth of tank and the strati- 
fication, an internal eigenfrequency a,, existed which was approximately equal 
to the difference frequency of a pair of surface eigenmodes aol ,~oz .  For the 
generation of the fundamental internal wave (horizontal mode number of I), 
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FIGURE 2. Surface-wave amplitude response a g d t  period. 

two neighbouring surface-wave peaks were selected. If the second horizontal 
internal mode was desired, two frequencies in the surface-wave response curve 
were chosen so as to be separated by one peak. This is indicated in figure 2. One 
of the surface eigenfrequencies cO1 was fixed and a response curve of the internal 
wave was obtained by varying the second surface-wave frequency cr2 and 
measuring particle and pressure amplitudes. The second surface-wave frequency 
a, was always within 0.5 % of the eigenfrequency ao2. 

Initial growth to 'steady state' of the internal wave was measured with the 
pressure probe. One (or both) of the wave maker motors was then turned off and 
the viscous decay of the internal wave measured in a similar way. Since observed 
surface-wave decay times were an order of magnitude shorter than those of the 
internal waves, turning the paddle off provided after only a short lapse of time 
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an initial condition of no surface-wave forcing for the internal wave. In  like 
manner, turning the paddle on provided after only a short lapse of time an 
initial condition of an established surface-wave field for the forcing of the resonant 
internal wave. The surface-wave ’response time ’ was typically one internal 
wave period. 

Following each series of runs (each of which lasted a few hours), the density 
structure was measured and the probes were recalibrated. In  the two-layer 
experiments, the mean position of the interface was also changed and the 
above procedure repeated. 

While the linear stratifications remained usable for several days, the two- 
layer profiles needed to be ‘sharpened up’ every few hours. This was accomp- 
lished by siphoning off fluid from the interface region and replacing it with fresh 
and salty water at the top and bottom, respectively. 

2.3. Dutu analysis 

The analog data from the pressure and wave probes, paddle monitor, and phase 
resolver for each experiment were stored on tape using a Precision Instrument 
(model 6103) eight-track F M  tape recorder. Playback in the FM mode repro- 
duced the original signals with little distortion and permitted further analysis. 
During the period of resonant growth of the internal wave, data from the four 
sensors were played into a Sanborn four-channel strip chart recorder (model 
67-1200). Playback was usually at  ten times the original tape speed. This per- 
mitted the use of two Rockland active filters (model IOIOP) and a PAR (Prince- 
ton Applied Research model 101) correlator. Tape loops spanning at  least ten 
interval-wave periods were made by transcribing onto a second tape recorder. 
Fourier analysis of each piece permitted study of the frequency spectrum of the 
pressure transducer and wave gauge during the non-stationary period of growth. 
When a steady state was attained, the pressure and resolver signals were cross 
correlated and the phase was determined. The above technique agreed quite 
well with the ‘ direct’ method of measurement from strip chart recorder tracings. 
The Fourier analysis of the surface-wave displacement was particularly in- 
teresting in the experiments in which surface eigenfrequencies were sufficiently 
separated so as to be adequately resolved by the correlator. 

3. Theory 
3.1. Nathemutical model 

The second-order or quadratic interaction among two surface gravity waves 
and one internal gravity wave will be considered. All waves will be assumed to 
be free, standing, two-dimensional waves which to lowest order in a small 
parameter 6 can be described by linear, inviscid wave theory. To next higher order 
in E (the Stokes wave slope) nonlinear and later viscous effects will be permitted. 
Higher-order interactions and surface tension will not be considered, the latter 
effect being negligible for the parameters selected. 

For an incompressible, Boussinesq fluid with a zeroth-order state one of rest 



Interactions among surface and internal gravity waves 807 

and hydrostatic equilibrium the equations and boundary conditions are well 
known : 

I P Du 1 
-+-vp+g- = 0, r, = Ptotal-Po, 
Dt Po Po 

I DP 
z + 2 u a , P o  = 0, P = Ptota*-Po(Z), 

v.u = 0, 

= 

PQ+p = 0, x = 7 (freesurface),) 

w = O ,  z = - D ,  

u= 0) x = 0, L. 

have been studied for the linearized equations by many investigators (see e.g. 
Kraus 1966). Both a surface mode with a single maximum of velocity a t  the free 
surface and an infinite number of internal modes with masima below the free 
surface are possible solutions. If the parameter N a / g y  < 1) where y is the vertical 
wavenumber, then the upper boundary condition for internal waves consistent 
with the Boussinesq approximation is that the vertical velocity must vanish. 

If in addition the surface-wave frequencies are much larger than the maximum 
buoyancy frequency 3 I), then the deep water surface waves are not 
affected by the stratification. Hence linear solutions to the dynamical equations 
and boundary conditions are of the form 

wi = a ja i f j ( z ) cosKixcos (~ j t+Bi ) ,  K~ =nin/L, ni= 1,2)  ..., 
u j  = - (aj  V ~ / K ~ ) ~ ; ( Z )  sin K~ x cos ( vj t + 0,) ) f ; ( x )  = a , f ( x ) ,  
$hj = (aj fTj/gK;)fi(X) COS K j  X Sin (U j t  + Oj), 
qj = a i f j ( 0 ) c o s ~ j ~ s i n ( ~ g t + ~ j ) ,  

where f;+yj2 f j  = 0, (11) 
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for a surface wave, 

for an internal wave, 
y; = {,p I 

2 N2 a3 - 1) 

I 1 for a surface wave, 

0 for an internal wave. 
fj(X = 0) = 

As is common with quadratic wsve-wave interactions, the nonlinear terms 
may cause a slow transfer of energy and momentum among the normal modes 
and higher harmonics of the system. The normal modes in the limiting case of 
weak stratification are simply the eigenmodes of surface standing waves with no 
stratification and standing, rigid lid internal waves. Quadratic products in Q1, 
Qz are of the form cos K, x cos K, x and cos K, x sin K ~ X .  These are expressible as 
sums of sin (K,$ K,)X and cos(~,f  K,)x. It is interesting to note that if two 
waves in a triad of interacting waves for which K~ f K~ ~f: K~ = 0 are standing, the 
third member, if it exists, is automatically a standing wave. Whether or not the 
third member of any triad exists depends upon two additional factors, the kine- 
matic conditions that el & cz - g3 = 0 and a non-zero interaction coefficient 
governing the momentum transfer among the waves of a triad. If both of these 
conditions are satisfied, a triad exists consisting of two surface waves and one 
internal wave. For any two given surface waves, the kinematic conditions can 
be satisfied exactly by a proper choice of N2.  

3.2. Interaction equations 
Following earlier work (e.g. Simmons), three primary waves satisfying the dis- 
persion relation roi = eoj(~j)  to lowest order are inserted into the nonlinear 
equations with the amplitude and phase of each of the waves allowed to vary 
slowly with time. Both amplitude and phase modulation must be considered 
for a complete solution to the problem at this order. Six equations can be derived 
for the slowly varying dependent variables. If subscripts 1, 2, 3 represent the 
surface wave of higher frequency, lower frequency and the internal wave re- 
spectively, then for an arbitrary P ( x )  the following equations can be obtained: 

The equations for the internal wave in the triad are not obtained in so straight- 
forward a manner as for the surface waves. The source term for the surface waves 
Qz arises from the nonlinear surface boundary condition (4). Both terms Q1 and 
Q2 must be treated for the internal wave. These forcing terms, described by 
Thorpe (1966) as body and surface ‘forces’, respectively, can be combined into 
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one equation and therefore compared, with the result that the body 'force' is 
negligible compared with the surface 'force ' when surface wavelengths are much 
smaller than internal wavelengths. 

At the fiee surface z = 0, (4) becomes for the internal mode 

-ga;w3 = Q ~ ,  = 0, (17) 

letting w3 = G3+wf; (18) 

9 W 3 )  = - -EO{Wf} + &I, (19) 

where 3 3 (a;+a:)a;+iva;. (20) 

then (3) becomes for G3 

The forced wave wf  and the free internal wave w3 satisfy the boundary conditions 

(21) i 
- w 3 = w f = 0 ,  z = - D ,  

G3 = 0, z = 0, 

-ga:wf = Q ~ ,  z = 0. 

A solution wf  satisfying the boundary conditions and representing aforced second- 
order surface disturbance is 

sinh ( K ~  - K ~ )  ( z  + D )  
gsinh(K1-K2)D Wf = c c c a a ~ 0 ~ ( ~ ~ - ~ ~ ) x s i n ( c , - ~ ~ t + 8 , - @ ~ ) .  

An equation for the internal wave can be derived of the form 

a - a03 COB (cs t + 83) + 'a3 dt sin (cst + 83) 
at 

Withf,(z) = exp{klz),f2(z) = exp{k,z} 

sinh ( K, - K ~ )  (2 + D) 
2{wf} cc N2 sinh (K,  - K,) D ' 

Qi cc ci ~ X P  { ( ~ i  + ~ z )  2). 

Since Q1 decays rapidly with depth, and sincef3(0) = 0, 

Using (26) and (23) and substituting for wf, the equations for resonant growth 
of an internal wave can be written as 

(27) 

(28) 

'as _ -  - c3 ~e,cr,a,a, cos (0,- 8, - 03), 

a d83 - = 031elo2a,a2sin(81-@2-83), 

at 

at 
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These equations, together with (13)-( 16), describe the resonant energy transfer 
among two surface and one internal gravity wave. One interesting property of 
these equations, and a good check on the approximations made, is that the total 
energy per unit area of the three waves is constant in time. 

- 
E1,2 = *Poga?,,, ( 30) 

dE3 - = -  
p0 [ dz N 2  f3 sinh K~ ( x  + D )  

al a, cr3 u1 a, a, cos (8, - O2 - O,) ,  (34) at 4 sinh K~ D 

I dz N”f3 sinh K,(Z + D))  
alcr,~3ala,a, cos (8, - 8, - 8,). (35) 

+ gsinhic,D 

It is a simple exercise to show that, consistent with the earlier assumption that 

( ~ ~ , ~ / a ~ ) ,  
Other integrals of the amplitude and phase equations as well as solutions to 

the set may be obtained following Simmons (1969), but instead simplifications 
will be made which will permit comparison with the experiments in which two 
surface waves were continuously forced by a paddle and the internal-wave ampli- 
tude was initially zero. Viscous and small detuning effects on the growing internal 
wave will be discussed, and a solution for the amplitude and phase of the internal 
wave obtained for constant surface-wave forcing. Finally, the growth rate will 
be evaluated for the special case of steplike and linear density fields. 

1, the right-hand side of (35) vanishes. 

3.3. Solutions with viscosity and detuning for constant surface waves 

FollowingMcGoldrick (1965,1970), McEwan(l971) andKim & Hanratty (1971), 
each mode will be assumed to decay independently. An unforced mode j will 
decay at  a rate aj /a j  = - hi, where ( ’ ) = d/dt. The decay factor hj  is independent 
of amplitude ai and depends upon viscosity, wavelength, frequency and the 
geometry of the tank. The primary source of internal-waveviscous dissipation for 
the parameters used in the laboratory experiment was due to side wall boundary 
layers. For the steplike, two-layer model an additional interior shear layer a t  
the interface was also important. The decay factor can be found experimentally 
and theoretically. It is presented in the appendix for the interfacial wave and 
has been derived by McEwan (1971) for a linear stratification. For the present, 
hi will be assumed known. To be consistent with earlier approximations, the fluid 
must be only slightly viscous ( A i / a j  + 1). Since solutions for surface-wave ampli- 
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tudes are not obtained, only internal-wave damping will be included in what 
follows. Focussing on the internal-wave amplitude and phase equations, hi will 
appear only in the amplitude equation for CE,. 

An additional parameter 6 will be introduced to represent the deviation of the 
forcing frequency c-r8 = gl - u, from the natural response frequency of an internal 
wave vo3 having a horizontal wavenumber 4 = K~ - K,. Thus 

~3 = ~0 , (1+6) ,  IS) < 1. (36) 

Following Joyce (1972), (27) ,  (28 )  for the internal wave become 

9 at + ~ , a ,  = 03~%a2a1u2 cos (el - 8, - e317 

a s  at + ~ u , a ,  = u3~a1a2 cr,cr,sin (0, - 0, - 0,). 

(37) 

(38) 

For a,, a,, el, 0, constant, solutions for a,, 0, may be obtained subject to the initial 
condition of zero amplitude for a,. Several special solutions will also be presented. 

0) s =  0, A, = 0, 

(iii) 

6 = 0, A, * 0, \ 

I o (sgnf > 0) ,  

7~ (sgnf < o) ,  e = {  

(v) The full solution, retaining all terms, is 

tan8 = tanOO 
I - exp { - h,t) cos Su,t - (h/Sa) exp(- h,t) sin 8r3t  4 

[ ~-exp(-~~t)cosSo,t+(~a,/A,)exp{-A~t)sinSu,t I (43) 
a, = a: [I + exp{ - 2 ~ , t )  - 2 exp(- A8t)cos 6u,t]*. 

The solutions obtained above are valid only when surface-wave amplitudes 
remain constant. As an internal wave of amplitude equal to a surface wave has 
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2.68 5.5 1 1.049 4.9 18.20 0.484 3.77 
17.72 0.492 

2.36 5.75 2 1.0’77 4.76 

fl 
2.68 4.75 1 1.116 1.10 

18.91 1.034 2.79 

18.20 0.493 3.75 

E2 17.88 1-015 

E3 17.71 0.488 

TABLE 1 

only a fraction of the energy, it was thought for the experiments that these 
solutions would approximately hold throughout the resonant growth to a steady 
state determined by the surface forcing and viscosity. Comparison with the 
data will show the above assumption to be valid for small internal waves (away 
from the peak response), but invalid when internal-wave amplitudes become large. 

3.4. Evaluation of interaction term for two special cases 
The theoretical approach thus far has been valid for a Boussinesq fluid with 
arbitrary stratification. Two simple cases (both analytically and experimentally) 
are a two-layer and a linear stratification. Accordingly, then, the interaction 
terms I for the two cases are 

AP 
Po 2 g s i n h ~ ~ D s i n h ~ ~ d ’  

sinh K~ (D - d )  
N2 = g-&(z+d) ,  I = - 

( -  l ) m + l  
N 2  = const., I = [1 + ( ~ ~ D / m n ) ~ ] - l ,  

gmn 

(44) 

(45) 

where m is the vertical mode number (1, 2, 3, . . .). 

4. Results 
Data from these basic experiments will be presented and compared with 

theory for the special cases of a steplike density profile (experiments 1 and 2) 
and a linear profile (experiment 3). As many of the results will be similar for all 
three cases, only experiment I will be discussed in detail. In experiments I and 3 
the fundamental (n = 1) horizontal internal mode was generated, while experi- 
ment 2 studied the growth of then = 2 mode. Table 1 shows a summary of experi- 
mental parameters, and figure 3 presents profiles of N2(z)  for all three experiments. 
Deviation of N 2  from theoretical ideals caused theoretical and experimental 
eigenfrequencies to differ by as much as 2 %. Anticipated frequencies were a.d- 
justed to take this into account. 

In  experiment 1 (El), the fundamental ‘interfacial’ wave was selected as the 
third member of the triad. Its observed steady-state amplitude response obtained 
from the pressure transducer and particle motion is shown for each of three 
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interface depths in figure 4. The intensification of the response as the interface 
was raised from 50cm (0)  to 40 cm (O), two surface wavelengths from the 
free surface, is apparent. The predicted response for an interface depth of 30 cm 
shows good agreement away from the peak, but overshoots the observed ampli- 
tude for small S. The steady-state phase response for the same example (hence- 
forth Elc )  in figure 5 was obtained by cross-correlating the pressure signal with 
the resolver reference signal. Except for the case of S = 0, all phases were under- 
predicted. This could partly be a result of the correlation technique, which 
averaged over phases that were, in many cases, still increasing away from z-. 

All theoretical curves for steady-state response depend strongly upon the 
internal-wave dissipation parameter h = A,. This quantity was measured in- 
dependently from the resonant interaction by turning both surface wave motors 
off, and observing the decay of a tunedinternal wave. Later the effect of turning 
off only one, rather than two, of the motors will be shown. In  figure 6, the decay 
of the free mode (T = 12.98 s) is shown along with a theoretical rate obtained (in 
the appendix) assuming side wall boundary layers and an internal shear layer 
at  an interface of constant N2 with thickness 1. The parameter h N O(Re)-i ,  
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FIUURE 6. Viscous decay of free mode interfacial wave in Eic with A’ = (2n/cr3) A,. Paddle 
forcing stopped at t /T  = 32. Axes are a3(t/T)/a3(33) against t /T,  T = 12.98s. 

Time, t /T  

FIGURE 7. Resonant growth of a tuned internal wave in E ic;  
a3(t/T) against t / T ,  T = 12.98s. 

where Re-1 = v K 2 / c r  and v is the dynamic viscosity. In  all cases where Some 
discrepancy in expected and measured decay rates existed, measured rates were 
used. 

The resonant growth from zero amplitude a, of the tuned internal wave is 
shown in figure 7. When the amplitude reached 90 % of its final value (5*5mm), 
the observed growth rate suddenly decreased from the predicted, viscously 
limited curve. For large t/T one continues to see an increasing discrepancy which 



816 

d 

4 5 * 
.rl M 

T. M .  Joyce 

0 
0 

n 
t 

4-x 
I 

Q 

d d 

3 
E 

M:n '  

FIGURE 8. Resonant growth of a detuned (6 = -0.061) internal wave 
in Elc;  as ( t /T) against t /T; t = 13.85s. 

Predicted 

0 0 o n o c  

O 0  a 
O"o-o / n  ' 

I I I I I I I I I I  

0 2 4 6 8 10 12 14 16 18 20 

Time, tlT 

FIGURE 10. Phase, 8-  fn, of a detuned (8 = -0.061) internd wave 
in E l c  against t /T,  T = 13.85s. 



Interactions among surface and internal gravity waves 817 

LI6 L/3 1 

Horizontal distance, x 

2 

FIGURE 11. Dependence of pressure upon horizontal position for the tuned 
n = 1 internal wave of Elc,  z = - 13cm, L = 2D = 180cm. 
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FIGURE 12. Dependence of pressure upon horizontal position for the tuned n = 2 
internal wave of E2, z = - 13 om, L = 2 0  = 180 cm. 

was evident in the steady-state response (figure 4). The resonant growth of a de- 
tuned wave is presentedin figure 8. A small constant offset between theory and ex- 
periment is apparent in this figure. The temporal variation of phase 0 = O3 - 6, + 8, 
for the tuned and detuned cases is shown in figures 9 and 10, respectively. As 
expected, one sees that for S = 0 the initial phase demanded by the interaction 
remains constant for the duration of the experiment. With 6 $: 0,  in figure 10 the 
phase drifts, initially linearly, finally reaching a value fixed by the detuning and 
viscosity. For the detuned case, the measured and predicted phase and amplitude 
(figure 8) differ by a constant offset. These two discrepancies are coupled, and 
could conceivably both be accounted for by a single unknown cause. 

Many of the above results were repeated in later experiments. Experiment 2 
was designed to generate a second interfacial mode in the horizontal, rather than 
n = 1. To show that both of these modes were actually involved in each experi- 
ment figures I1 and 12 indicate changes in measured pressure with horizontal 
position at a fbed depth for Elc, E2, respectively, with cosine dependence of 
the expected perturbation pressure field included. 

If one were to present the clearest agreement with theory for any of the 
various cases (tuned or detuned growth, steady-state response curves), one 
would choose E2 as a ‘typtical’ example. To show this, figure 13 indicates 

FLY 63 52 
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FIGURE 13. Resonant growth of a tuned second horizontal mode (n = 2) internal wave in E2; 
a, (t/!Z') against t /T,  T = 6-08s. 

the growth to steady state of the internal wave in E2. Because of the shorter 
period of this wave (as opposed to El),  more observations were possible, and a 
greater separation in surface-wave frequencies permitted adetailed spectral study 
of the surface-wave displacement throughout E2. In all three experiments, 
slight distortions in the modulated surface displacement appears (for the cases 
of large internal-wave response) after several internal-wave periods. These dis- 
tortions in the regular modulation were resolved in E2 and will be presented at 
the end of this section. Their nature indicates that such good agreement as shown 
in figure 13 was rather fortuitous ! 

In  E3 an n = 1, m = 1 internal wave was generated, where m is the vertical 
mode number of this constant N 2  experiment. The growth to steady state of both 
a tuned and a detuned wave in figure 14 bears much resemblance to E l  with the 
exception that observations tended to be more erratic. It is suspected that, for 
the continuously-stratified case, transient and other noise no longer confined to 
the interface (e.g. higher modes) interfered with the detection of the resonant 
mode. That the resulting wave was the m = 1 mode is verified by figure 15, which 
shows the variation of the steady-state pressure with x (top) and z (bottom). 
In  E3 the viscous decay of the free n = m = 1 mode was examined when one and 
both motors were turned off. The latter case simulated pure viscous decay of an 
unforced mode, while in the former case an additional high frequency surface 
wave was present. Figure 16 indicates that decay was faster with one motor off 
than with both off. Least squares regression lines for both A's have been drawn 
(open circles) on figure 16, The explanation for the difference is simple; with a 
single, forced surface wave present, the decaying internal wave could resonantly 
excite a second surface wave thereby losing energy faster. An examination of 
the surface displacement clearly showed that this was true: a modulation of the 
displacement indicative of the presence of a second surface wave continued 
long after (200 surface wave periods) the forcing paddle had been disengaged. 

In  E2 surface-wave amplitude spectra were computed using the PAR 
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FIGURE 16. Observed effect of the nonlinear interaction upon the time decay of the funda- 
mental internal mode in E3. Decay over-plotted of two different experimental conditions 
(see text), showing relative internal-wave amplitude against t /T,  A’ = (Zn/o;) A,, 
T = 12.75s. 

FIGURE 17. Development of surface-wave displacement spectrum a t  x = 0 with non-dimen- 
siondized time t/T during resonant growth of n = 2 tuned internal wave of E2. Successive 
spectra represent averages over 20 record lengths, each length containing 20 surface-wave 
periods, T = 6-08s. 
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FIGURE 18. As figure 17, but with detuned (6 = -0.033) 
internal wave in E2, T = 6.28 s. 

correlator and Fourier analyser with tape loops containing approximately 400 
surface waves with 20 modulations. A record length for computation of 35 surface- 
wave periods was chosen, long enough to resolve two frequencies differing by 
6 % (I6 surface-wave periods), yet short enough to prevent instrumental aliasing 
in the correlator (50 surface-wave periods). Spectra shown in figures 17 and 18 
represent averages over each tape loop (20 internal-wave periods). The change in 
the spectrum with time is indicated by successive surface-wave spectra from 
different tape loops. The paddle spectrum is included for reference. 

The spectra for the tuned internal wave of figure 13 are shown in figure 17. 
The general trend indicates a steady loss of energy by the paddle-forced wave 
of higher frequency and a growth of a third surface wave of lower frequency which, 
being unforced by the paddle, was initially absent. Other lumps a t  higher and 
lower frequencies appear, but these remain small. The new surface wave at  2.65 
Hz, however, eventually becomes as large as the initial paddle-forced wave. 
The rate of change of the spectrum becomes less after 50 internal-wave periods. 
It is not clear that any asymptotic state had been reached before one of the motors 
was turned off (t/T = S O ) ,  causing a decay of the internal wave and all but one 
of the surface waves. Figures 14 and IS together provide a complete picture of 
the important waves involved in this experiment. What is amazing is the good 
agreement with a theory which assumes no change in the surface-wave spectrum. 
It will be explained shortly that most of the details of the surface-wave field are 
lost upon the internal wave, whose growth depends upon products of surface- 
wave amplitudes and their relative phases. 

In  E2 a detuned internal wave of period 6.28s was generated having a final 
amplitude of 25 % of that for the tuned wave just discussed. Its final amplitude 
was predicted to within the experimental error. The surface-wave spectrum of 
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figure 18 indicates no significant change throughout the growth to steady state 
of the detuned, resonant internal wave. 

During one of the experiments it was observed on one occasion that a single 
surface wave of large amplitude became unstable to another surface wave of 
lower frequency and an internal wave. This effect of a critical amplitude on 
stability of a single wave, though not studied in detail, is similar to observations 
made by Davis & Acrivos (1967), McEwan (1971) and Martin, Simmons & 
Wunsch (1972). 

The development of the surface-wave field can be understood by reference to 
the energy transfer equations (32)-( 34) for the triad resonance. While the energies 
of each of the two surface waves can change significantly owing to the presence of 
an internal wave, the actual transfer from the surface-wave field to the internal 
wave remains small owing to cancellation of large terms when the sum of the 
changes for both surface waves is found. For resonant growth of the internal 
wave a3, the interaction requires that sgn [fA(O) cos (0, - 8, - O,)] = - 1 in (32), 
(33). Hence the surface wave of higher frequency loses energy, most of which goes 
to the other surface wave. The growing waves canin turn form a triad with a new 
surface wave having a lower frequency than either of the other two and which is 
not directly forced by the paddle. 

The iriternal-wave growth rate is practically unaffected by energy exchanges 
between the two surface waves in a triad, because of its low demand upon net 
surface-wave energy, and because the product a, a2 of surface-wave amplitudes 
appeuing in,tlze transfer term in (27) remains nearly constant. Additional surface 
waves generated continue to contribute to sustained internal-wave growth if their 
relative phases are correct. The details of the development of the surface-wave 
spectrum, including nonlinearity, paddle forcing and dissipation, are beyond 
the scope of this work. We wish only to indicate that observations in contra- 
diction with the restrictive assumption of constant surface-wave forcing are not 
inconsistent with (13)-( 16), (27)-(29). 

5. Summary 
Theoretical results for the nonlinear interaction among two standing surface 

waves and one standing internal wave were specialized for two-layer and linear 
stratifications. Comparison with experiments showed that the paddle-forced 
surface waves remained constant and the resonantly excited internal-wave 
growth was predicted quite well for small internal-wave amplitudes, when both 
viscous effects and slight detuning were included in the model. When internal- 
wave amplitudes became large, however, the surface-wave field became distorted, 
with at least one additional surface wave of lower frequency than the original 
two, gaining energy at  the expense of the surface wave of highest frequency. The 
resulting internal wave was of lower amplitude than would be anticipated for a 
constant surface-wave field. The new surface wave in all cases formed a resonant 
triad with the internal wave and intermediate frequency surface wave. 

In  agreement with Xlasselmann’s (1967) stability criterion, the wave of highest 
frequency in the triad initially loses energy to the other two. A preferential 



Interactions among surface a d  internal gravity waves 823 

direction exists then for energy transfer to lower frequencies in the surface-wave 
field. The internal wave in a triad exchanges only a fraction of the total energy 
with the surface waves, yet a large exchange of energy takes place within the 
surface-wave field owing to the presence of the internal wave. The latter, if of 
sufficiently large amplitude, acts as a catalyst, promoting energy transfer among 
surface waves to a lower order, formally, than deep water surface-wave self- 
interactions. 

The strength of the interaction is dependent from (29) upon the overlapping 
of the surface forcing and the vertical eigenfunctions of the internal modes. Hence 
the presence of a seasonal, or shallow, pycnocline would enhance the interaction 
term (the term decreases exponentially as an interface is removed from the free 
surface). If one compares the ratio of the interaction coefficients derived for the 
two-layer and linear stratifications, one finds that, in the limit as K ~ D &  1, 
/c3d N O( 1) (infinitely deep ocean, shallow pycnocline), 

where D(d) is the total (interface) depth, and K~ is the vertical wavenumber of the 
surface forcing. Results of this paragraph hold for progressive as well as standing 
waves. Thus, an internal wave trapped on a shallow density interface would be 
much more receptive to second-order nonlinear resonant interactions with surface 
gravity waves for an oceanic system. 

The author is indebted to the staff in the Department of Meteorology a t  M.T.T., 
especially Prof. Robert Beardsley, for their help and guidance. The work was 
sponsored at M.I.T. by an N.D.E.A. Title IV fellowship, National Science 
Foundation grant QP-5053 and Office of Naval Research contract N00014-67- 
A-0204-008 and completed at W .H.O.I. under sponsorship of the Johns Hopkins 
University Applied Physics Laboratory under contract 3721 11.08. 

Appendix. Evaluation of viscous dissipation for a M u s e  two-layer 
system 

A two-layer model of total density difference A p  will be considered, in which 
the interfacial region is characterized by a thin transition layer of thickness I 
centred at  a depth d, with a constant N such that ( N / V ) ~  % 1.  The dissipation of 
total mechanical energy E of a two-dimensional internal wave of frequency CT, 
wavenumber K, in a tank of width W ,  length L, and depth D can be written as 

8 = -2hE, (A 1) 

where h = h(l) + 
boundary layers, respectively. 

arises chiefly from dissipation at the interface and rigid waIl 

(i) Interface region. In  this region 

{a;(a$+a;)+N2a;}w N {aqa;+Nza$}w = 0. (A 2) 
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Phillips (1966) considered an inviscid model similar to this and obtained simple 
solutions for the velocities. Within the layer, the dissipation per unit horizontal 
area is 

Substituting for the velocities and solving for At1), one can obtain 

h(l)= (Re- 1 ) N2 8 2 ,  

Re-1 = v ~ 2 1 a  < 1. 

(ii) If qi cos (at + 8) is the interior velocity of the standing internal wave 
(qi = q,(x,z)), then the total velocity field satisfying a no-slip boundary con- 
dition at a rigid wall is 

I qT = q,[cos (d + 0) - exp ( - 6) cos (d + B - [)I, 
6 = y(a/2v)B. 

y is a co-ordinate normal to the rigid surface. The total dissipation per unit area 
in the boundary layer is 

Since little horizontal oscillatory motion was observed at  the free surface, it will 
be considered a no-slip surface. For a standing internal-wave field, and a thin 
boundary layer (satisfied if Re-l< l), one ca,n derive 

A@) = BvRe-iQ, 

2 2 p[ 1 + 2d/L] sinh-2 ~d + (p + Ap) [ 1 + ( D  - d ) / L ]  sinh-2 K(D - d )  
p coth K d  + (p + Ap) coth K(D - d)  Q = -+x+ 

(A 8) 

(A 9) 

Combining the results of (i) and (ii), one obtains 

h = Q(T Re-4 [Q + 2(N2/a2)  Re-*] + O(Re-l,l/D Re-4) (T. 
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